4.7 Article

Electromagnetic field induced alterations in fluid flow through lacuno-canalicular system of bone

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2021.107036

关键词

Canalicular fluid flow; Microgravity; Electromagnetic fields; Bone adaptation; Stream lines; Cantilever bending

向作者/读者索取更多资源

Osteoporosis, bone-muscle disuse, and long-term exposure to space microgravity can lead to bone loss and fractures. This study investigates the role of electromagnetic fields in regulating fluid motion within bone tissue and suggests an optimal loading regimen with electromagnetic field to prevent and mitigate irreversible bone loss caused by microgravity and disuse.
Osteoporosis, bone-muscle disuse, and long-term exposure to space microgravity cause bone loss and promote bone fractures. Therapeutic devices and interventions for the prevention of bone loss and regulation of fracture healing are serious challenges for orthopaedic clinicians and researchers. Electromagnetic field exposure in combination with mechanical loading has the potential to prevent disuse bone loss as it promotes osteogenesis i. e., new bone formation. Loading-induced fluid motion in lacunar space acts as a stimulus for osteo-activities. Nevertheless, how the electromagnetic field regulates biomechanical stimulus such as fluid motion required for osteogenesis within bone tissue is not well understood. Accordingly, this paper attempts to establish a mathematical model to investigate the role of electromagnetic fields to alter the cantilever bending-induced lacunar fluid flow behaviour. A more realistic curvy canalicular channel subjected to electrohydrodynamics (EHD) mechanism is modelled to study poromechanical and canalicular fluid flow parameters such as porepressure gradient, fluid velocity, wall shear, and streamline patterns. Computational results indicate that electromagnetic fields modulate the fluid motion required for osteogenic activities even in bone tissues with higher porosity and permeability. The present study explains how electromagnetic fields possibly modulate mechanobiological stimulus in bone tissue. Based on the outcomes, an optimal loading regimen along with the electromagnetic field can be selected to enhance osteogenic response to prevent and mitigate irreversible bone loss that occurred due to microgravity and disuse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据