4.7 Article

Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2022.107293

关键词

Hybridization; Flexural properties; Functional grading; Additive manufacturing; Triply periodic minimal surfaces

资金

  1. Khalifa University (KU) [RCII-2019-003]

向作者/读者索取更多资源

This study investigates the enhancement of flexural properties of lightweight beams through lattice functional grading and hybridization. Experimental results show that functional grading and hybridization significantly improve the specific flexural modulus of sheet-based TPMS latticed-beams, aiding in deflecting crack growth and slowing down final failure.
Due to the recent boom in digital design for additive manufacturing and 3D printing, there has been a significantly growing interest in latticed structures for light design and improved mechanical properties. However, the focus in the literature has mostly been on compressive mechanical properties of uniformly latticed structures with little emphasis on flexural properties of latticed-beams that are functionally graded and hybridized with different lattice topologies. Therefore, this paper aims to explore the effect of lattice relative density gradation and hybridization on the specific flexural properties of prominent sheet-based triply periodic minimal surfaces (TPMS) cellular four-point loaded beams. First, the effective elastic properties of the cubic porous topologies are evaluated computationally to converge to certain sheet-based TPMS cellular structures capable of providing high flexural properties. Schwartz primitive (P) revealed high stiffness to shear loading, meanwhile, the F-Rhombic Dodecahedron (FRD) showed better resistance to uniaxial loading, and the Diamond (D) showed well-combined uniaxial and shear moduli. The selected four-point bend (4 PB) latticed-beams are functionally graded following a bilinear pattern and hybridized through the span of their length inspired by the shearing force and bending moment diagrams arising in the 4 PB beam, in view of the effective elastic properties of the TPMS topologies. The additively manufactured AlSi10Mg uniform, functionally-graded, and hybridized latticed-beams are tested in four-point bending and the results are compared with the finite element results. Both the experimental and numerical outcomes show good agreement within the elastic-plastic regime. From experimental results, it is found that functional grading and hybridization can considerably enhance the specific flexural modulus of sheetbased TPMS latticed-beams. Also, relative density gradation within the four-point bend specimens proved very essential in deflecting crack growth thereby retarding the final failure, meanwhile hybridization is conveyed to mitigate shear-band failure. Combination of functional gradation and hybridization on the latticed-beams resulted in a significant increase in the specific flexural stiffness. Therefore, this study provides guidelines on how to enhance the flexural properties of lightweight beams through lattice functional grading and hybridization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据