4.4 Article

Methodology to address potential impacts of plastic emissions in life cycle assessment

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11367-022-02040-1

关键词

Degradation; Plastics; LCIA; SSDR; Fate; Impact; Plastic emissions

资金

  1. Germany's Federal Ministry for Education and Research (Bundesministerium fur Bildung und Forschung-BMBF) [01UP1702A-B]
  2. European Union [860720]
  3. Projekt DEAL
  4. Marie Curie Actions (MSCA) [860720] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

This study proposes a method for assessing the risks of plastic emissions by quantifying plastic pollution equivalents using characterization factors based on the persistence of plastics in the environment. The results include degradation measurements, redistribution patterns, and an uncertainty analysis of the suggested characterization factors.
Purpose Products made of plastic often appear to have lower environmental impacts than alternatives. However, present life cycle assessments (LCA) do not consider possible risks caused by the emission of plastics into the environment. Following the precautionary principle, we propose characterization factors (CFs) for plastic emissions allowing to calculate impacts of plastic pollution measured in plastic pollution equivalents, based on plastics' residence time in the environment. Methods and materials The method addresses the definition and quantification of plastic emissions in LCA and estimates their fate in the environment based on their persistence. According to our approach, the fate is mainly influenced by the environmental compartment the plastic is initially emitted to, its redistribution to other compartments, and its degradation speed. The latter depends on the polymer type's specific surface degradation rate (SSDR), the emission's shape, and its characteristic length. The SSDRs are derived from an extensive literature review. Since the data quality of the SSDR and redistribution rates varies, an uncertainty assessment is carried out based on the pedigree matrix approach. To quantify the fate factor (FF), we calculate the area below the degradation curve of an emission and call it residence time tau(R). Results and discussion The results of our research include degradation measurements (SSDRs) retrieved from literature, a surface-driven degradation model, redistribution patterns, FFs based on the residence time, and an uncertainty analysis of the suggested FFs. Depending on the applied time horizon, the values of the FFs range from near zero to values greater than 1000 for different polymer types, size classes, shapes, and initial compartments. Based on the comparison of the compartment-specific FFs with the total compartment-weighted FFs, the polymer types can be grouped into six clusters. The proposed FFs can be used as CFs which can be further developed by integrating the probability of the exposure of humans or organisms to the plastic emission (exposure factor) and for the impacts of plastics on species (effect factor). Conclusions The proposed methodology is intended to support (plastic) product designers, for example, regarding materials' choice, and can serve as a first proxy to estimate potential risks caused by plastic emissions. Besides, the FFs can be used to develop new CFs, which can be linked to one or more existing impact categories, such as human toxicity or ecotoxicity, or new impact categories addressing, for example, potential risks caused by entanglement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据