4.4 Article

Altered DNA methylation at age-associated CpG sites in children with growth disorders: impact on age estimation?

期刊

INTERNATIONAL JOURNAL OF LEGAL MEDICINE
卷 136, 期 4, 页码 987-996

出版社

SPRINGER
DOI: 10.1007/s00414-022-02826-w

关键词

Forensic age estimation; Epigenetic age estimation; DNA methylation; Children with growth disorders

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [RI 704/4-1, WA 1706/8-1]

向作者/读者索取更多资源

This study investigates the application of age estimation based on DNA methylation in healthy children and children with growth disorders. The findings suggest that growth disorders can impact epigenetic age predictions and CpGs in genes involved in growth and development should be avoided in age prediction models for children.
Age estimation based on DNA methylation (DNAm) can be applied to children, adolescents and adults, but many CG dinucleotides (CpGs) exhibit different kinetics of age-associated DNAm across these age ranges. Furthermore, it is still unclear how growth disorders impact epigenetic age predictions, and this may be particularly relevant for a forensic application. In this study, we analyzed buccal mucosa samples from 95 healthy children and 104 children with different growth disorders. DNAm was analysed by pyrosequencing for 22 CpGs in the genes PDE4C, ELOVL2, RPA2, EDARADD and DDO. The relationship between DNAm and age in healthy children was tested by Spearman's rank correlation. Differences in DNAm between the groups healthy children and the (sub-)groups of children with growth disorders were tested by ANCOVA. Models for age estimation were trained (1) based on the data from 11 CpGs with a close correlation between DNAm and age (R >= 0.75) and (2) on five CpGs that also did not present significant differences in DNAm between healthy and diseased children. Statistical analysis revealed significant differences between the healthy group and the group with growth disorders (11 CpGs), the subgroup with a short stature (12 CpGs) and the non-short stature subgroup (three CpGs). The results are in line with the assumption of an epigenetic regulation of height-influencing genes. Age predictors trained on 11 CpGs with high correlations between DNAm and age revealed higher mean absolute errors (MAEs) in the group of growth disorders (mean MAE 2.21 years versus MAE 1.79 in the healthy group) as well as in the short stature (sub-)groups; furthermore, there was a clear tendency for overestimation of ages in all growth disorder groups (mean age deviations: total growth disorder group 1.85 years, short stature group 1.99 years). Age estimates on samples from children with growth disorders were more precise when using a model containing only the five CpGs that did not present significant differences in DNAm between healthy and diseased children (mean age deviations: total growth disorder group 1.45 years, short stature group 1.66 years). The results suggest that CpGs in genes involved in processes relevant for growth and development should be avoided in age prediction models for children since they may be sensitive for alterations in the DNAm pattern in cases of growth disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据