4.7 Article

Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 31, 页码 14319-14330

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2022.02.175

关键词

Antibacterial; Green chemistry; Photocatalyst; Almond extract; Nanocomposites; DyBa2Fe3O7.988/DyFeO3

资金

  1. council of Iran National Science Foundation (INSF) [97017837]
  2. University of Kashan [159271/SRY7]

向作者/读者索取更多资源

In this study, photocatalytical and antibacterial activities of DyBa2Fe3O7.988/DyFeO3 (Dy-Ba-Fe-O) nanocomposites were investigated as eco-friendly applications. The synthesis method chosen was ultrasound technique to ensure low energy consumption and achieve a pure product with good crystallinity. Natural almond core extract was used as a green reagent. The nanocomposite exhibited a band gap of 2.6 eV, enabling visible-light photocatalysis. Significant degradation of Rhodamin-B dye and strong antibacterial activity against Gram-negative pathogens were observed. The properties of the nanocomposite were characterized by various analyses.
For the first time, photocatalytical and antibacterial activities of DyBa2Fe3O7.988/DyFeO3 (Dy-Ba-Fe-O) nanocomposites as eco-friendly applications of this compound was studied in the same time. Since the applications of this compound are eco-friendly, ultrasound technique was chosen as the synthesis method. Achieving the pure product with good crystallinity with the lowest energy consumption can be considered as one of the advantages of this work. Using the almond core extract as a natural reagent was another reason for consideration this method as a green process. Band gap of this nanocomposite was estimated about 2.6 eV that showed this product can be used as a visible-active photo catalyst. Rhodamin-B dye as an organic pollutant model using the as-prepared nano composite was degraded about 72% that was a considerable result under visible irradiation. Elimination of microorganisms was studied by disc diffusion to recognize the sensitivity of bacterial (Staphylococcus aureus, Bacillus subtilis, E. coli, K. pneumonia and P. aeruginosa) strains the manufactured. The results confirmed that DyBa2Fe3O7.988/DyFeO3 (DBFeO) nanocomposites can be used as an antibacterial agent because of the manifested strong antibacterial ability upon Gram-negative pathogens such as K. pneumonia and E. coli. The properties of this product were characterized by different analyses including SEM, XRD, EDS, FT-IR, DRS and TEM. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据