4.7 Article

PEG mediated tetragonal calcium molybdate nanostructures for electrochemical energy conversion applications

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 47, 期 62, 页码 26013-26022

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2022.03.023

关键词

Calcium molybdate; PEG; Dumbbell and spindle-like; morphology; HER activity

资金

  1. MHRD RUSA-Phase 2
  2. UGC -SAP
  3. DST FIST
  4. PURSE

向作者/读者索取更多资源

Hydrogen is emerging as a preferred energy source and next generation fuel. In this study, cost-effective and efficient calcium molybdate nanostructures were prepared as electrocatalysts for hydrogen evolution reaction. The nanostructures exhibited superior activity due to their elevated electronic conductivity, mesoporous nature, high surface area, and unique morphology.
Hydrogen is one of the popular abundant elements in the world and, it is rising as a preferential energy and has developed a tool for decarbonization. Recently, hydrogen has been considered as next generation fuel for cars, trucks, homes, etc, because of the arising of worse climate. In this present work, the cost-effective and efficient electrocatalyst of calcium molybdate nanostructures were successfully prepared with the help of non-ionic surfactant (PEG) through the co-precipitation method for hydrogen evolution reaction. In XRD spectra, the high crystallite peak observed at 28.4 degrees value corresponded to (112) lattice planes confirmed the formation of calcium molybdate nanostructures. In Raman spectra, the existence of tetrahedral [MoO4] clusters and octahedral [CaO8] clusters confirmed tetragonal calcium molybdate nanostructures formation. In SEM analysis, unique mor-phologies such as dumbbell and spindle-like structures was observed, which was achieved by using the PEG. The pore volume, pore diameter and specific surface area of CaMoO4-6 ml PEG were found to be 0.149 cc/g, 11.685 nm and 28.07 m2/g respectively. Electrochemical performance confirmed that the CaMoO4-6 ml PEG nanostructures exhibited superior HER activity with the low 198 mV overpotential at 10 mA/cm2 and lesser 204 mV/dec Tafel slope value. The charge transfer resistance of CaMoO4-6 ml PEG was 0.65 II, which has smaller than that of other electrocatalysts such as pure CaMoO4 (24.9 II), CaMoO4-2 ml PEG (2.47 II) and CaMoO4-4 ml PEG (2.04 II). The excellent HER activity was explored elevated electronic conductivity, mesoporous nature, high surface area and, unique morphology.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据