4.7 Article

Molecular study on anisotropic thermal conductivity of nanoscale liquid argon films with different configurations

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2021.122325

关键词

Freestanding film; Sessile film; Confined film; Molecular dynamics; Anisotropic thermal conductivity

资金

  1. National Natural Science Foundation of China [51876058]

向作者/读者索取更多资源

The influence of size and solid/liquid interface on the thermal conductivities of nanoscale liquid argon films with different forms was studied using the molecular dynamics method. The results showed that the anisotropy of thermal conductivity is closely related to the film's configuration and weakens as the film thickness increases. The analysis of the densities, potential energy distributions, and vibrational densities of state of argon atoms provided insight into the interface effect on the anisotropic thermal conductivity of nanoscale liquid argon films.
A B S T R A C T The thermodynamic and transport properties of thin films may be substantially divergent from their bulk materials. This is especially distinguished for nanoscale liquid films, as demonstrated by prior work about the specific heat capacity of nanoscale water films. Furthermore, the forms of thin liquid films, either freestanding, sessile or confined, also exhibit apparent impact on the properties. In this investigation, the influence of size and solid/liquid interface on the thermal conductivities of nanoscale liquid argon films with these different forms is studied by employing the molecular dynamics method. The results show that the anisotropy of the thermal conductivity is closely related to the configuration, but weakened while the film thickness increases. The relationships between the anisotropic thermal conductivities and the thin film size are revealed by considering the contribution of a solid/liquid interface to the thermal conductivity. The reason is analyzed in the aspect of size and interface by comparison of the densities, potential energy distributions, and vibrational densities of state of argon atoms, which show asymmetry in the directions parallel and perpendicular to the sessile film. Thus, insight is provided into the interface effect on the anisotropic thermal conductivity of nanoscale liquid argon films with different forms which can be found in many applications including interface separation, evaporation, and distillation. (c) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据