4.3 Article

Effects of Climate Change on the Production of Polysaccharides and Phycobiliproteins by Nostoc commune Vaucher ex Bornet et Flahault

出版社

SPRINGER INT PUBL AG
DOI: 10.1007/s41742-022-00401-0

关键词

Climate change; Cyanobacteria; Environmental parameters; Pharmaceutical and biotechnological applications; Phycobiliproteins; Polysaccharides

资金

  1. Generalitat Valenciana Government [AICO/2019/258]

向作者/读者索取更多资源

N. commune synthesizes polysaccharides and phycobiliproteins, and its production can be significantly influenced by environmental factors such as UV radiation, ammonium concentration, electrical conductivity, and temperature. Different environmental conditions can lead to varying effects on the synthesis of polysaccharides and phycobiliproteins, highlighting the adaptability of N. commune to extreme conditions.
Nostoc commune synthesizes polysaccharides and phycobiliproteins under natural conditions, but little is known about how environmental changes could affect their production. In this study, colonies of N. commune were subjected to increases in ultraviolet radiation, ammonium concentration, electrical conductivity, and temperature, to assess the potential changes in the concentrations of polysaccharides and phycobiliproteins. The results indicate that UVB radiation significantly increased the synthesis of polysaccharides (F = 62.691; p < 0.01), while UVA radiation caused a significant increase in the production of total phycobiliproteins (F = 22.472, p < 0.01) phycocyanin (F = 8.546, p < 0.01), phycoerythrin (F = 12.876, p < 0.01), and allophycocyanin (F = 58.143, p < 0.001). Also, 50 mu M NH4Cl significantly increased the synthesis of polysaccharides (F = 45.706; p < 0.01) while increased near significant total phycobiliproteins (F = 5.043, p < 0.1), phycoerythrins (F = 4.57, p < 0.1), allophycocyanin (F = 4.892, p < 0.1), and phycocyanin (F = 4.921, p < 0.1). Furthermore, a conductivity value of 4 mScm(-1) enhanced near significant the production of polysaccharides (F = 4.816; p < 0.1) and phycocyanin (F = 9.728, p < 0.1). Nevertheless, a significant effect of total phycobiliproteins was observed (F = 23.686, p < 0.01), as well as allophycocyanin (F = 57.092, p < 0.001), and phycoerythrin (F = 13.928, p < 0.01). Finally, the optimal temperature for the synthesis of polysaccharides was 30 degrees C. Also, 30 oC significantly increased the synthesis of total phycobiliproteins (F = 292.211, p < 0.001), as well as on phycocyanin (F = 126.433, p < 0.001) and allophycocyanin (F = 7.991, p < 0.05). These data indicate the ability of N. commune to modify its synthesis of polysaccharides and phycobiliproteins in response to extreme environmental conditions related to climate change, underscoring the interest in N. commune for future applied research on the biotechnological and pharmaceutical production of both types of compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据