4.7 Article

Effects of Kraft lignin and corn cob agro-residue on the properties of injected-moulded biocomposites

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 177, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2021.114421

关键词

Natural fibres; Biopolymer; Environmental degradation; Mechanical properties; Thermal analysis; Microstructure

资金

  1. Region Auvergne-Rhone-Alpes
  2. European Regional Development Fund

向作者/读者索取更多资源

The study focuses on utilizing lignin and corn cob resources to produce biocomposites, with one particular mixture showing the highest mechanical performance. The addition of lignin contributes to improved hydrophobicity of the composite materials, enhancing their overall properties.
Lignocellulosic by-products are frequently disposed by means of combustion. This study investigates an alternative route for corn cob and Kraft lignin resources in order to support circular economy. The respective plantbased fibres and filler were compounded for the first time together with a poly(lactic acid) (PLA) matrix. Consecutively, seven different biocomposites were processed by injection-moulding and further characterized. The biocomposite containing a mixture of Kraft lignin and corn cob (12 wt% in total) exhibited the highest flexural strength (84 MPa). A proper wetting of PLA onto the corn cob particles demonstrated a good compatibility at matrix/fibre interface. PLA molecular structure changed in presence of 20 wt% lignin filler, with effect on the glass transition temperature and on the composite mechanical strength. The fibres moderately influenced composites surface tension, while Kraft lignin contributed to a slight increase of surface hydrophobicity. Surface energy (sigma sTotal) of composites have been estimated at 27.6, 28.7 and 27.8 mN/m for PLA/KL-20, PLA/CC-10 and PLA/KL-15/CC-5 respectively. While the polar component (sigma sPolar) have been estimated at 17.8, 20.0 and 18.7 mN/m for PLA/KL-20, PLA/CC-10 and PLA/KL-15/CC-5 respectively. Unlike the PLA/corn cob composite, those containing Kraft lignin were entirely biodegraded within 2 months in industrial composting conditions study. The materials could be utilized for end-use products thanks to their good mechanical and thermal properties. By adding wood-lignin and corn by-products, materials cost and carbon footprint shall decrease in comparison to pure PLA, while being a biodegradable and sustainable replacement of polyolefins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据