4.6 Article

The effect of primary particle polydispersity on the morphology and mobility diameter of the fractal agglomerates in different flow regimes

期刊

JOURNAL OF AEROSOL SCIENCE
卷 94, 期 -, 页码 22-32

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jaerosci.2015.12.005

关键词

Mobility diameter; Primary particle polydispersity; Free molecular regime; Continuum regime; Stokesian Dynamics; Radius of gyration

向作者/读者索取更多资源

Properties of colloidal and aerosol agglomerates depend on their morphology. Accurate estimation of the mobility-equivalent diameter d(m) in different flow regimes is essential in many industrial processes and measurements. Previous work on the hydrodynamic properties of clusters focussed on agglomerates composed of monodisperse primary particles. However aggregates formed in real processes, e.g. soot particles, are usually formed from polydisperse monomers. Using numerically-generated agglomerates it is shown here that the radius of gyration, surface area, and mass of the agglomerates increase with primary particle polydispersity (given constant geometric mean primary particle size d(pg)). Here, d(m) is taken as the projected area-equivalent diameter for the free molecular regime; Stokesian Dynamics is used to compute d(m) in the continuum flow regime. For fixed number of primaries and d(pg), d(m) increases with polydispersity in both free molecular and continuum regimes ( > 20% for large particles at high polydispersity). Considering an aerosol population with polydisperse primary particles, this increase is found to depend on whether the variations in primary particle size occur within aggregates or between aggregates; this can be important in the interpretation of measurements. Finally, mobility diameters are correlated with total number, median diameter and its geometric standard deviation of the primary particles. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据