4.1 Article

Inhalation Study of Mycobacteriophage D29 Aerosol for Mice by Endotracheal Route and Nose-Only Exposure

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/jamp.2015.1233

关键词

aerosol inhalation; computer model; D29; deposition efficiency; mycobacteriophage; nose-only exposure; pulmonary delivery; respiratory tract; simulation

资金

  1. Projects in the Prevention of Major Infectious Diseases [2012ZX10003009-005]

向作者/读者索取更多资源

Background: Lytic mycobacteriophage D29 has the potential for tuberculosis treatment including multidrug-resistant strains. The aims of this study are to investigate deposition and distribution of aerosolized phage D29 particles in naive Balb/C mice, together with pharmacokinetics and evaluation of acute lung injury. Methods: Pharmacokinetics and BALF (bronchoalveolar lavage fluids) were analyzed after administration of phage D29 aerosols by endotracheal route using Penn-century aerosolizer; Collison 6-jet and Spinning top aerosol nebulizers (STAG) were used to generate phage aerosols with different particle size distributions in nose-only inhalation experiments. After exposure, deposited amounts of phage D29 particles in respiratory tracts were measured, and deposition efficiencies were calculated. A typical path deposition model for mice was developed, and then comparisons were made between predictions and experimentally measured results. Results: Approximately 10% of aerosolized phages D29 reached lung of mouse for pulmonary delivery, and were completely eliminated until 72 h after administration. In contrast, about 0.1% of intraperitoneal injected phages reached the lung, and were almost eliminated at 12 h time point. The inflammation was hardly observed in lung according to the results of BALF analysis. The CMADs (count median aerodynamic diameters) of generated aerosol by Collison and STAG nebulizer were 0.8 mu m and 1.5 mu m, respectively. After nose-only exposure, measured deposition efficiencies in whole respiratory tract for 0.8 and 1.5 mu m phage particles were below 1% and 10%, respectively. Predictions of the computer deposition model compared fairly well with experimentally measured results. Conclusions: This is the first systematic study of phage D29 aerosol respiratory challenge in laboratory animals. It provides evidence that aerosol delivery of phage D29 is an effective way for treating pulmonary infections caused by Mycobacterium tuberculosis. This research will also provide important data for future inhalation experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据