4.6 Article

Impedance Properties of Multi-Optrode Biopotential Sensing Arrays

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 69, 期 5, 页码 1674-1684

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2021.3126849

关键词

Impedance; Electrodes; Biomedical optical imaging; Standards; Optical recording; Impedance measurement; Biomedical measurement; Biopotentials; impedance properties; interfaces; liquid crystals; micro electrode arrays; optrode; recording sites; signal quality

资金

  1. Australian Research Council [DP160104625, DP200102825]
  2. US Office of Naval Research Global [N62909-18-1-2147]
  3. Australian National Health and Medical Research Council [2002282]
  4. Australian Research Council [DP200102825] Funding Source: Australian Research Council

向作者/读者索取更多资源

This study investigates the impedance properties of optrode technology for biopotential recording. The results show that the liquid crystals in the optrode platform have higher input impedance values suitable for voltage sensing. The optrode system automatically scales the input impedance to maintain a relatively constant ratio, allowing for high spatial-resolution recordings regardless of the size of the recording site.
Recording and monitoring electrically-excitable cells is critical to understanding the complex cellular networking within organs as well as the processes underlying many electro-physiological pathologies. Biopotential recording using an optical-electrode (optrode) is a novel approach which has potential to significantly improve interface-instrumentation impedance mismatching as recording contact-sizes become smaller and smaller. Optrodes incorporate a conductive interface that can sense extracellular potential and an underlying layer of liquid crystals that passively transduces electrical signals into measurable optical signals. This study investigates the impedance properties of this optical technology by varying the diameter of recording sites and observing the corresponding changes in the impedance values. The results show that the liquid crystals in this optrode platform exhibit input impedance values (1 M omega - 100 G omega) that are three orders of magnitude higher than the corresponding interface impedance, which is appropriate for voltage sensing. The automatic scaling of the input impedance enabled within the optrode system maintains a relatively constant ratio between input and total system impedance of about one for sensing areas with diameters ranging from 40 mu m to 1 mm, at which the calculated signal loss is predicted to be <1%. This feature preserves the interface-transducer impedance ratio, regardless of the size of the recording site, allowing development of passive optrode arrays capable of very high spatial-resolution recordings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据