4.6 Article

Synapse and Tunable Leaky-Integrate Neuron Functions Enabled by Oxide Trapping Dynamics in a Single Logic Transistor

期刊

IEEE ELECTRON DEVICE LETTERS
卷 43, 期 5, 页码 793-796

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LED.2022.3162639

关键词

Logic gates; Neurons; Transistors; Synapses; Regulation; Electron traps; Voltage control; Artificial synapse; neuron; neuromorphic computing; spiking neural network

资金

  1. Singapore Ministry of Education [MOE-T2EP50120-0003]

向作者/读者索取更多资源

High-k gated n-MOSFET can exhibit the memory plasticity of a synapse and the leaky-integration of a neuron through the temporal dynamics of charge capture/emission by gate-oxide defects. It also demonstrates a tunable leaky-integrate function. The research opens up possibilities for low-power trigger circuit design and scalability.
We show that a high-k gated n-MOSFET can embody both the memory plasticity of a synapse and leaky-integration of a neuron, by virtue of the rich temporal dynamics of charge capture/emission by gate-oxide defects. In addition, a tunable leaky-integrate function is demonstrated. The lower limit of energy per input spike is on the order of fJ, which provides room for low-power trigger circuit design and scalability. This work points to the prospect of a gate-engineered logic transistor serving as the universal building block of hardware spiking neural networks, thereby accelerating the realization of compact, energy efficient neuromorphic computers given the relative maturity of the transistor technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据