4.6 Article

Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective

期刊

HYDROLOGICAL PROCESSES
卷 36, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/hyp.14596

关键词

artificial intelligence; deep learning; machine learning; modelling objective; policy support; predication; process-based modelling; scenarios; scientific discovery

资金

  1. IAS Vanguard Fellowship
  2. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Machine learning applications in Earth and environmental sciences have evolved separately from traditional process-based modeling paradigms. Overcoming cultural barriers and exploring the strengths and weaknesses of both approaches are essential for developing a coevolutionary approach to model building.
Machine learning (ML) applications in Earth and environmental sciences (EES) have gained incredible momentum in recent years. However, these ML applications have largely evolved in 'isolation' from the mechanistic, process-based modelling (PBM) paradigms, which have historically been the cornerstone of scientific discovery and policy support. In this perspective, we assert that the cultural barriers between the ML and PBM communities limit the potential of ML, and even its 'hybridization' with PBM, for EES applications. Fundamental, but often ignored, differences between ML and PBM are discussed as well as their strengths and weaknesses in light of three overarching modelling objectives in EES, (1) nowcasting and prediction, (2) scenario analysis, and (3) diagnostic learning. The paper ponders over a 'coevolutionary' approach to model building, shifting away from a borrowing to a co-creation culture, to develop a generation of models that leverage the unique strengths of ML such as scalability to big data and high-dimensional mapping, while remaining faithful to process-based knowledge base and principles of model explainability and interpretability, and therefore, falsifiability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据