4.5 Article

Estimation of groundwater recharge rates using soil-water isotope profiles: a case study of two contrasting dune types on Langeoog Island, Germany

期刊

HYDROGEOLOGY JOURNAL
卷 30, 期 3, 页码 797-812

出版社

SPRINGER
DOI: 10.1007/s10040-022-02471-y

关键词

Groundwater recharge; Barrier islands; Unsaturated zone; Numerical models; Isotopes

资金

  1. Projekt DEAL

向作者/读者索取更多资源

The creation of artificial dunes for coastal protection can affect freshwater lenses in coastal aquifers. The presence of vegetation on dunes influences recharge processes, with sparse vegetation leading to winter recharge and more vegetation resulting in slightly higher and annual recharge. Isotope sampling can provide important insights into the dynamics of recharge processes and their response to climate change.
The creation of artificial dunes for coastal protection may have important consequences for freshwater lenses in coastal aquifers. The objective of this study was to compare the recharge processes below such a young dune with scant vegetation to an older dune covered by grass and herbaceous vegetation. To this aim, soil and water samples were collected from the unsaturated zone at two sites on Langeoog Island in northern Germany, and the soil water was analysed for stable water isotopes and chloride. Recharge rates were calculated by using a new version of HYDRUS-1D, which was modified to simulate isotope fractionation during evaporation. Both the model outcomes and the data highlight the importance of fractionation, which is slightly more pronounced at the older, more vegetated dune. At the newly constructed dune, vegetation dieback seemingly reduces the importance of transpiration during summer. Recharge occurs year-round, albeit predominantly during the winter months. Calculated recharge rates are consistent with lysimeter measurements, but are significantly higher than previously reported rates based on groundwater age data, which is primarily attributed to the absence of dune shrub at the sites investigated here. More data are needed to establish the importance of soil-water repellency and overland flow. Based on the results, it is proposed that repeated isotope sampling can yield important insights into the dynamics of recharge processes, including their response to climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据