4.7 Article

Low-shear modeled microgravity affects metabolic networks of Escherichia coli O157:H7 EDL933: Further insights into space-microbiology consequences

期刊

FOOD RESEARCH INTERNATIONAL
卷 154, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.foodres.2022.111013

关键词

-

资金

  1. Korea Research Foundation [NRF-2011-0012712]

向作者/读者索取更多资源

Low-shear modeled microgravity (LSMMG) affects the growth, biofilm formation, and pathogenicity of Escherichia coli O157:H7. Transcriptomic analysis reveals upregulation of genes involved in nutrient and energy metabolism, glycogen biosynthesis, and secretion pathway, while downregulation of genes related to host cell contact secretion. LSMMG also stimulates the transcriptional upregulation of Shiga toxin 1 and toxin HokB.
Escherichia coli O157:H7 EDL933 exposed to low-shear modeled microgravity (LSMMG) and normal gravity (NG) was used for a transcriptomic analysis. The modified Gompertz model (R-2 = 0.81-0.99) showed an increased growth rate of E. coli O157:H7 under LSMMG. The mechanism of this active growth was associated with highly upregulated genes in nutrient and energy metabolism, including the TCA cycle, glycolysis, and pyruvate metabolism. Green fluorescent protein-labeled E. coli O157:H7 also formed significantly thick biofilms (fluorescent unit: NG, 1,263; LSMMG, 1,533; P = 0.0473) under LSMMG, whereas bacterial mobility decreased slightly (P = 0.0310). The transcriptomic analysis revealed that genes encoding glycogen biosynthesis (glgCAP operon) were upregulated (1.40 to 1.82 of log fold change [FC]) due to the downregulation of csrA (2.17 of log FC), which is the global regulator of biofilm formation of E. coli. We also identified 52 genes in E. coli O157:H7 EDL933 that were involved in the secretion pathway, 32 of which showed >= 2-fold significant changes in transcription levels after cultivation under LSMMG. Notably, all downregulated genes belonged to the type III and VI secretion systems, indicating that host cell contact secretion was dysregulated in the LSMMG cultures compared to the NG cultures. LSMMG also stimulates the pathogenicity of E. coli O157:H7 via transcriptional upregulation of Shiga toxin 1 (1.36 to 2.81 log FC) and toxin HokB (6.1 log FC). Our results suggest LSMMG affects bacterial growth, biofilm formation, and E. coli O157:H7 pathogenicity at some transcriptional levels, which indicates the importance of understanding biological consequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据