4.7 Article

Effects of root characteristics on panicle formation in japonica rice under low temperature water stress at the reproductive stage

期刊

FIELD CROPS RESEARCH
卷 277, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2021.108395

关键词

Japonica rice; Low water temperature; Reproductive stage; Panicle size; Root physiology

类别

资金

  1. Heilongjiang Province Natural Science Foundation Project [LH2020C005]
  2. Postdoctoral Fund to Pursue Scientific Research of Heilongjiang Province [LBH-Z16018]
  3. National Key Research and Development of China [2017YFD0300406]
  4. China Postdoctoral Science Foundation [2018 M631904]
  5. Young Talents Project of Northeast Agricultural University [18QC05]
  6. Heilongjiang Province Applied Technology Research and Development Plan Project [GA20B101]

向作者/读者索取更多资源

Low root zone water temperature during reproductive growth affects root physiological characteristics and phytohormones in japonica rice, thereby influencing panicle development, especially under severe low temperature stress.
Cold stress during the reproductive stage causes spikelet sterility and limits rice productivity in high-altitude and high-latitude regions. In higher plants, phytohormones regulate root and panicle development under environmental stress. Maintaining high root physiological activity during the reproductive stage may be a strategy for high yields in crops under abiotic stress. However, little is known about the root physiological activity and panicle size response mechanisms associated with rice cold tolerance at the reproductive stage. In this study, we investigated the effects of low root zone water temperature (Tw) during reproductive growth on root physiological characteristics and root phytohormones associated with panicle development in japonica rice from 2018 to 2019. The rice plants were subjected to 17 degrees C low Tw for 5, 10, and 15 days during reproductive growth. The results showed that, compared with the control, rice pollen grain development was hindered, and the percentage of fertile pollen decreased under low Tw; the number of surviving total panicle branches decreased significantly; the number of degraded branches increased significantly; the range of change increased gradually with the extension of low Tw stress time; and the impact of low Tw stress on the secondary branches and spikelets was greater than on the primary branches and spikelets. The abundance of zeatin (ZR) and auxin (IAA) in the roots, the root physiological activity, and the number of surviving spikelets and branches had a significant positive correlation in variety DN428. DN428 exhibited strong cold tolerance and possessed a high level of ZR and IAA in the roots, which allowed it to maintain root antioxidant enzyme activity, root vitality, and the root absorption surface area at a relatively stable level, resulting in the roots not accumulating large amounts of soluble protein, soluble sugar, malondialdehyde, and proline. This facilitated the accumulation and transfer of photosynthetic materials above the ground and provided a stable material foundation for spikelet and branch formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据