4.5 Article

Deviant circadian rhythmicity, corticosterone variability and trait testosterone levels in aggressive mice

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 55, 期 6, 页码 1492-1503

出版社

WILEY
DOI: 10.1111/ejn.15632

关键词

aggression; circadian rhythms; clock; corticosterone; suprachiasmatic nucleus; testosterone

资金

  1. Innovative Medicines Initiative [115916]

向作者/读者索取更多资源

The study found that aggressive BALB/cJ mice showed deviations in various components related to circadian rhythm and hormone levels, including a shorter free-running period in constant darkness, reduced variability in state corticosterone levels, lower testosterone levels, and alterations in the expression of specific proteins in the suprachiasmatic nucleus.
Although aggression has been linked to disturbances of circadian rhythm, insight into the neural substrate of this association is currently lacking. The suprachiasmatic nucleus (SCN) of the hypothalamus, the master circadian clock, is regulated by clock genes and known to influence the secretion of cortisosterone and testosterone, important hormones implicated in aggression. Here, we investigated deviations in the regulation of the locomotor circadian rhythm and hormonal levels in a mouse model of abnormal aggression. We tested aggressive BALB/cJ and control BALB/cByJ mice in the resident-intruder paradigm and compared them on their locomotor circadian rhythm during a 12 h light/12 h dark cycle and constant darkness. State (serum) corticosterone and trait (hair) corticosterone and testosterone levels were determined, and immunohistochemistry was performed to assess the expression of important clock proteins, PER1 and PER2, in the core and shell of the SCN at the start of their active phase. Compared with BALB/cByJ mice, aggressive BALB/cJ mice displayed: (1) a shorter free-running period in constant darkness; (2) reduced state corticosterone variability between circadian peak and trough but no differences in corticosterone trait levels; (3) lower testosterone trait levels; (4) higher PER1 expression in the SCN shell with no changes in PER2 in either SCN subregion during the early dark phase. Together, these results suggest that aggressive BALB/cJ mice have disturbances in different components encompassing the circadian and hormonal cycle, emphasizing their value for future investigation of the causal relationship between SCN function, circadian clocks and aggression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据