4.6 Article

Interactive effects of sea-level rise and nitrogen enrichment on the decay of different plant residues in an oligohaline estuarine marsh

期刊

ESTUARINE COASTAL AND SHELF SCIENCE
卷 270, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ecss.2022.107835

关键词

In-situ weirs; Interactive effect; Nitrogen enrichment; Organic matter decay; Sea-level rise; Substrate quality

资金

  1. National Science Foundation of China [41877335, 42177213]
  2. Key Natural Science Foundation of Fujian Province, China [2019J02008]

向作者/读者索取更多资源

Sea-level rise and nitrogen enrichment have significant impacts on the decomposition of plant residues in coastal marshes, with their interactive effects playing a crucial role. Understanding the substrate quality is essential in quantifying the combined effects of these global change factors.
Sea-level rise (SLR) and nitrogen (N) enrichment are two critical issues that affect coastal marshes. They affect organic matter decomposition in soils and, thus, affect the marshes' ability to sequester carbon. However, the impacts of SLR and N enrichment, especially their interactive effects, on the decomposition of different quality plant residues in soils remains unclear. Using in-situ weirs and litterbags, we examined the effects of SLR (three times the natural flooding duration), N enrichment (48 g N m- 2 yr-1), and the combination of SLR and N enrichment, on the decomposition of buried Cyperus malaccensis shoot, and root and rhizome (R&R) residues over 549 days in the Minjiang Estuary, China. Individual SLR and N enrichment treatments significantly promoted shoot decomposition by promoting plant growth, but not for R&Rs because of their inability to increase porewater NH4+ levels. Interestingly, combined SLR and N enrichment significantly promoted both shoot and R&R decomposition. Moreover, we observed significant interactive effects between SLR and N enrichment on the decay of both residues, with antagonistic and synergistic effects on the decay of shoots and R&Rs, respectively. Although SLR or N enrichment, or their combined effect, affected plant residue decomposition differently, substrate quality appeared to be the chief factor governing organic matter decomposition. Overall, shoot decay rates (0.0023-0.0048 d-1) were significantly greater than those for R&Rs (0.0026-0.0031 d-1) and more sensitive to SLR, N enrichment, and combined treatments. Our results indicate that estimating the combined effect of SLR and N enrichment based on the addition of individual effects is often inaccurate and that substrate quality directs deviance. This study highlights the importance of quantifying the interactive effects of multiple global change factors and distinguishing substrate quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据