4.7 Article

Effect of different factors dominated by water level environment on wetland carbon emissions

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 29, 期 49, 页码 74150-74162

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-022-20289-9

关键词

Wetland; Water level; Carbon emission; Meta-analysis; Methane; Carbon dioxide

资金

  1. National Natural Science Foundation of China [41730643]

向作者/读者索取更多资源

The exacerbation of global warming has led to changes in wetland carbon emissions worldwide. Water level, temperature, and precipitation are important factors affecting CH4 and CO2 emissions.
The exacerbation of global warming has led to changes in wetland carbon emissions worldwide. Therefore, we conducted a meta-analysis of methane (CH4) and carbon dioxide (CO2) emissions in wetland ecosystem and explored the underlying mechanisms. Our finding indicated that (1) water level of -50 to 30 cm (the negative value represents the depth of the groundwater table, whereas the positive value represents the height of the above-ground water table) and -10 cm will result in a large CH4 and CO2 emissions, respectively; (2) CO2 and CH4 massive emissions occurred at the temperature range of 15-20 degrees C and > 20 degrees C, respectively; (3) CH4 and CO2 emissions were higher when the mean annual precipitation (MAP) was between 400 and 800 mm, but lower at an range of 800-1200 mm; (4) there was no significant difference in CH4 and CO2 emissions in marsh over time; however, CO2 emissions in fen were relatively high; (5) there was no significant difference in CO2 emissions between the forest, grass, and shrub groups; there was also no significant difference in CH4 emission within the forest group; and (6) MAP has a low impact (0.577) on the CO2 emissions of wetlands. Collectively, our findings highlight the characteristics of wetland CH4 and CO2 emissions under different conditions dominated by water level, enhance our understanding of the potential mechanisms that govern these effects, and provide basis for future wetland management and restoration in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据