4.7 Article

Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters

期刊

ENVIRONMENTAL RESEARCH
卷 204, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.112347

关键词

Antimicrobial; Antioxidant; Nanoparticle; Silver; Arum italicum; DNA damage

向作者/读者索取更多资源

The advancement of nanotechnology in the scientific world contributes significantly to living systems, particularly when combined with plant-derived resources. The synthesis of nanoparticles using silver metal and Arum italicum plant has shown promising results in antibacterial activity and DNA damage prevention. However, the nanoparticles did not exhibit antifungal effects against Candida albicans. The interaction between the plant and silver metal was analyzed through various methods, showing potential applications in antimicrobial and antioxidant properties.
The science world advancing day by day contributes to living systems in many areas with the development of nanotechnology. Besides being easily obtained from plants, the advantages it brings increase the importance of nanotechnology. Environmentally friendly, economical, and compatible with plants are just a few of the advantages it brings. Silver metal is one of the most preferred active ingredients in nanoparticle synthesis. Arum italicum is used in the treatment of various diseases in the health sector due to the structures it contains. In our study, nanoparticle synthesis was made by using Ag metal with Arum italicum plant. Then, the antimicrobial, DNA damage prevention and DPPH radical quenching activity of Ag NPs/Ai nanoparticles were investigated. The interaction of the plant with Ag, analysis by X-ray diffraction (XRD), UV visible spectrophotometer (UV-vis), scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier-converted infrared spectroscopy (FT-IR) methods has been done. It has been observed that Ag NPs/Ai clusters formed by Arum italicum with Ag have an antibacterial effect against Bacillus subtilis, Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogens. However, an antifungal effect hasn't been observed against Candida albicans fungus. Pseudomonas aeruginosa bacteria exerted a stronger effect than an antibiotic. It is seen that Ag NPs/Ai has a protective and anti-damage effect against DNA damage. The antioxidant effect of Ag NPs/Ai is remarkable when DPPH radical quenching activity is compared to positive control BHA and BHT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据