4.7 Article

Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination

期刊

ENVIRONMENTAL RESEARCH
卷 208, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.112727

关键词

Flow-electrode deionization; Capacitive deionization; Desalination; Metal-organic frameworks; Nanoporous carbon

资金

  1. Chongqing Talents plan for Young Talents [CQY201905062]
  2. Venture & Innovation Support Program for Chongqing Overseas Returnees [cx2019034]

向作者/读者索取更多资源

Flow-electrode capacitive deionization (FCDI) has shown robust desalination performance. In this study, ZIF-8 derived nanocarbon materials were prepared as electrode materials for FCDI desalination, exhibiting excellent desalination rates due to their high conductivity, large specific surface area, and well-developed pores.
Flow-electrode capacitive deionization (FCDI) has shown a robust desalination performance, in which the electrode materials play a crucial role. However, commercial activated carbon (AC) commonly with relatively poor conductivity, which can be a limit to the desalination process. To address this issue, we successfully prepared ZIF-8 derived nanocarbon materials (Zx, X = 0, 1, 2, 3, the number representing the activator ratio) via a pyrolysis activation procedure as electrode materials for FCDI desalination. The results manifested that Z3 achieved desalination rates of 0.0403 and 0.094 mg min-1 cm-2 in the isolated closed cycle (ICC) and the shortcircuited closed cycle (SCC) mode, respectively, at 1.2 V with only 5 wt% carbon loading. The desalination rate of Z3 in the SCC mode was improved with flow rates and influent salt concentrations increase, reaching 0.278 mg min-1 cm-2 under a continuous operation. In the ICC mode, it was found that the adsorption capacity of the Zx sample was positively correlated with its specific surface area. The superior performance of Z3 could be attributed to the high conductivity, large specific surface area and well-developed pores. Overall, this work provided new insights and references for electrode material's application to FCDI desalination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据