4.7 Article

Valorization of spent brewery yeast biosorbent with sonication-assisted adsorption for dye removal in wastewater treatment

期刊

ENVIRONMENTAL RESEARCH
卷 204, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.112385

关键词

Congo Red; Regeneration; Acoustic properties; Desorption; Dye recovery

向作者/读者索取更多资源

The research demonstrated that using spent brewery yeast as a biosorbent can effectively remove dye pollutants from textile wastewater, with the addition of ultrasonication improving dye recovery. The optimal dosage for adsorption was found to be 4 g/L of biosorbent, with adsorption equilibrium fitting the Langmuir model and kinetics best fitting pseudo-second order model.
The effluent of textile industries containing synthetic dyes contributed to substantial pollution to water bodies. The biosorption process of Congo Red dye was successfully performed by integrating ultrasonication in the adsorption step with spent brewery yeast as a novel and renewable biosorbent. The adsorption process was hindered when ultrasonication was employed together with the biosorbent, indicating that desorption process had occurred. The adsorption process showed that 4 g/L of biosorbent was the optimum dosage for adsorption of 50 mg/L of Congo Red dye, and that the adsorption equilibrium fitted to the Langmuir model, with kinetics best fitted with pseudo-second order model. The maximum capacity of the adsorption was 52.6 mg/g, showing the potential of spent brewery yeast to aid in removing wastewater pollutants. Maximal Congo Red dye recovery (100%) was achieved in the sonication-assisted desorption studies using 0.01M NaOH as the eluting agent. The ultrasonication effects contributed to the efficient recovery of dye and good conversion of spent brewery yeast to biosorbent can be beneficial for treating pollution from textile wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据