4.7 Article

Modification of activated carbon using urea to enhance the adsorption of dioxins

期刊

ENVIRONMENTAL RESEARCH
卷 204, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.112035

关键词

Modification; Activated carbon; Adsorption; Dioxins; Urea

资金

  1. National Key R&D Program of China [2018YFC1802102]

向作者/读者索取更多资源

This research focuses on effectively modifying activated carbon with urea to improve its adsorption capacity for dioxins, by enhancing pore structure and introducing nitrogen. The optimized modification led to increased adsorption efficiency, with AC600 showing the highest efficiency at 97.65% for dioxins, while AC800 with more nitrogen-containing groups achieved 85.24% efficiency for low-concentration dioxins.
Activated carbon is commonly used to remove dioxins from flue gas via adsorption. Improving the targeted adsorption capacity of activated carbon for dioxins can reduce the consumption of adsorbents and help achieve emission standards for target pollutants. Here, commercial coal-based activated carbon was used as a raw material and modified by urea impregnation along with treatment at high temperature under a nitrogen atmosphere. It was found that modification with urea effectively improved the pore structure of activated carbon while incorporating a certain amount of nitrogen. The best modification effect was achieved at a modification temperature of 600 degrees C, an impregnation ratio of urea to activated carbon of 1:1, and with high-temperature treatment for 2 h. The mesopore volume of the modified activated carbon (AC600) reached 0.38 cm3/g, accounting for 57.58% of the total pore volume. With an impregnation ratio of urea to activated carbon of 1:1, high-temperature treatment for 2 h, and a modification temperature of 800 degrees C, a certain amount of nitrogen was introduced into the carbon rings to form a modified activated carbon (AC800) rich in pyridine and pyrrole groups (atomic percentage = 4.84%). The activated carbon modified by urea and the unmodified activated carbon were subsequently selected for dioxin adsorption experiments using a dioxin generation and adsorption system. AC600 showed the highest adsorption efficiency for dioxins, reaching 97.65%, based on toxicity equivalents. Although AC800 has poor pore properties, it has more pyridine and pyrrole groups than AC600. Consequently, the efficiency of AC800 at adsorbing low-concentration dioxins reached 85.24% based on toxicity equivalents. Overall, this study describes two mechanisms for effectively modifying activated carbon with urea based on (1) optimizing the pore structure of activated carbon and (2) incorporating nitrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据