4.7 Article

Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye

期刊

ENVIRONMENTAL RESEARCH
卷 204, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2021.112047

关键词

Nanochitosan; Carboxymethyl cellulose; TiO2; Photocatalyst; Crystal violet; Dye degradation

向作者/读者索取更多资源

The study successfully synthesized a biocomposite-based nano-photocatalyst using sol-gel technique, which showed excellent photocatalytic performance in degrading crystal violet dye, achieving 95% degradation under visible light irradiation.
Development of novel bionanomaterials for water and wastewater treatment has gained increased attraction and attention in recent times. The present study reports an effective biocomposite-based nano-photocatalyst comprised of nanochitosan (NCS), carboxymethyl cellulose (CMC), and titanium dioxide (TiO2) synthesized by sol-gel technique. The as-prepared NCS/CMC/TiO2 photocatalyst was systematically characterized by X-ray diffraction, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy with energy dispersive Xbeam spectroscopy, Differential scanning calorimetry (DSC), and Thermogravimetric analysis (TGA). Photocatalytic degradation of the crystal violet (CV) dye using this nano photocatalyst was studied by varying the irradiation time, catalyst dosage, feed pH, and initial dye concentration. Further, the kinetic analysis of dye degradation was explored using the Langmuir-Hinshelwood model, and a plausible photocatalytic mechanism was proposed. The modification of TiO2 using NCS and CMC accelerated photocurrent transport by increasing the number of photogenerated electrons and holes. Overall, the study indicated the excellent photocatalytic performance of 95% CV dye degradation by NCS/CMC/TiO2 than the bare inorganic TiO2 photocatalyst under visible light irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据