4.7 Article

Surface treated Phoenix sylvestris for bioadsorption of oil from aqueous solution: Isotherms and kinetic studies

期刊

ENVIRONMENTAL RESEARCH
卷 209, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.112836

关键词

Oil spill; Adsorption; Agricultural waste; Phoenix sylvestris; Diesel

向作者/读者索取更多资源

This study aims to develop a biosorbent from discarded agricultural waste to effectively remove diesel from water. The results showed that the waste palm leaves, both physically and chemically modified, had good adsorption properties, with the chemically modified material exhibiting the highest adsorption capacity. The study also demonstrated the feasibility and efficacy of this biosorption technique.
Biosorption is a versatile technique of removing the oil spill - one of the major toxicants that causes water pollution, which threatens the ecological balance of the aquatic ecosystem. The proposed research aims in developing a viable adsorbent from discarded agricultural waste, Phoenix sylvestris, which was surface altered, assessed and utilised as a biosorbent for the effective removal of diesel from aqueous solution in batch adsorption trials. Waste palm leaves, Phoenix sylvestris (RPS)was physically (PMPS) and chemically modified (CMPS) to adsorb diesel in the emulsion. The synthesised materials were characterised by FTIR, SEM, and EDS, confirming a well-defined microporous structure consisting of ionisable groups. The studies indicated optimised conditions of 10 g, 4.5 g and 2 g of RPS, PMPS and CMPS respectively at 303K for an optimised adsorption time of 60 min. Freundlich isotherm agreed well with experimental data, and the kinetic mechanism claimed better results with RPS, PMPS and CMPS for Pseudo first-order model. The adsorbents could be reused five times without much loss of efficiency. From the performed studies, it can be inferred that good adsorption capacities at optimised conditions followed the order of CMPS > PMPS > RPS. Thermodynamic analysis proved the feasibility of such biosorption with exothermic nature predicting spontaneous attraction of oil components to the surface of PMPS and CMPS. Moreover, the density of the CMPS layer rendered proven results for such biosorption displaying a hyperbolic dependency assuring its efficacy. Hence, it can be concluded that the prepared adsorbent from Phoenix sylvestris, an agricultural waste, possess good adsorptive properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据