4.5 Article

Topology optimization for multi-layer multi-material composite structures

期刊

ENGINEERING OPTIMIZATION
卷 55, 期 5, 页码 773-790

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/0305215X.2022.2034801

关键词

Multi-material design; multi-layer structure; topology optimization

向作者/读者索取更多资源

This article investigates the topology optimization of multi-layer multi-material composite structures under static loading. The moving iso-surface threshold optimization method, previously defined for single or cellular materials, is extended to multi-layer multi-material structures using a physical response function discrepancy scheme. It is also integrated with an alternating active-phase algorithm as an alternative procedure. The proposed methods are applied to three types of objective functions, namely, minimizing compliance, maximizing mutual strain energy, and minimizing full-stress designs. Examples are presented and compared with existing literature to verify the derived formulations for topology optimization of multi-layer multi-material structures.
This article investigates topology optimization of multi-layer multi-material composite structures under static loading. A moving iso-surface threshold optimization method, previously well defined for single or cellular materials, is extended to multi-layer multi-material structures using a physical response function discrepancy scheme. It is also integrated with an alternating active-phase algorithm as an alternative procedure. The proposed methods are applied to three types of objective functions, namely, minimizing compliance, maximizing mutual strain energy and minimizing full-stress designs. The corresponding response functions relevant to each optimization problem according to the proposed topology optimization methods are strain energy density, mutual strain energy density and von Mises stress, respectively. Examples are presented and compared with those available in the literature to verify the derived formulations on topology optimization for multi-layer multi-material structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据