4.7 Article

Detection of local and clustered outliers based on the density-distance decision graph

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2022.104719

关键词

Outlier detection; Anomaly detection; Local reachable density; Kernel density estimation; Density lifting distance; Density-distance decision graph

向作者/读者索取更多资源

This article proposes an outlier detection method based on density-distance decision graph, which can detect local, global, and clustered outliers simultaneously. The method combines kernel density estimation and local reachable distance to calculate local density, density ratio, and density lift distance to determine the final outlier score.
Outlier detection tasks refer to identifying the objects that have different characteristics from the normal observations. Most existing approaches detect outliers from the global perspective, which can effectively detect global outliers and most clustered outliers but cannot detect local outliers when the normal samples form clusters with different densities. The methods based on local outlier factors can effectively detect local outliers, but when the number of outliers increases, the more occurrences of clustered outliers will lead to the degeneration of the detection performance. We proposed an outlier detection method based on density-distance decision graph to detect local, global and clustered outliers simultaneously. Firstly, kernel density estimation and local reachable distance are combined to calculate the local density. The density ratio of the neighbors of an instance to itself is calculated as the degree of local outliers. Then, we propose a metric named density lifting distance as the degree of global outliers, which is calculated by the distance between k nearest neighbors with higher density of the instance and itself. The density ratio and density lift distance are combined to draw the density-distance decision graph, and the product of two metrics is calculated as the final outlier score. Comprehensive experiments were conducted on 8 synthetic datasets and 16 real-world datasets compared with 12 state-of-the-art methods. The results show that the proposed method works well when the samples form clusters with different densities as well as the percentage of outliers varies, and outperforms the state-of-the-art methods tested in terms of AUC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据