4.7 Article

Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2022.115412

关键词

Cost; Emissions; Energy efficiency; Diesel; Hydrogen; Battery; Bus fleet

资金

  1. Consejo Nacional de Investigaciones en Ciencia y Tecnologia (CONICET) [PIP 179025]
  2. CONICET
  3. ANPCyT-FONCyT [PICT-2019-0856]

向作者/读者索取更多资源

Within the energy transition, this paper compares different bus technologies and energy mixes for urban transport vehicles based on cost, energy consumption, and greenhouse gas emissions. The results show that battery and hydrogen fuel cell buses have reduced emissions, while compressed natural gas buses are currently the better option. However, battery electric buses are projected to become the best option by 2023, followed by hydrogen fuel cell buses from 2027 onwards. The transition to zero-emission technologies in Argentina's urban bus fleet would significantly reduce carbon dioxide equivalent emissions and energy consumption.
Within the context of the energy transition, there are several alternatives under study for the gradual replacement of diesel fuel based urban transport vehicles. This paper proposes an answer to the following question: Which bus technology and energy mix is more efficient in terms of cost, energy consumption and greenhouse gas emissions? A method is proposed to compare different urban bus fleet technologies, using an integrated index composed of three indices that measure well-to-wheel energy use, global warming potential in terms of carbon dioxide equivalent emissions, and total cost of ownership. The method is applied to the case of Argentina, from the 2019 scenario to the year 2030, and the results for each index show that, (i) even for the current energy scenario, battery and hydrogen fuel cell buses show a decrease in greenhouse gas emissions; that (ii) today the compressed natural gas bus is a better mean of passenger transport for both urban and intercity uses (it could reduce the carbon dioxide equivalent emissions 10.07% and the total cost of ownership 5.3%); and that (iii) both battery and hydrogen fuel cell vehicles become cost competitive with compressed natural gas and diesel vehicles over the course of the current decade. In addition, (iv) the battery electric bus is shown to become the best option by 2023 and (v) the hydrogen fuel cell bus proves to be the best option from 2027 onwards. The transition of the entire urban bus fleet in Argentina to zero-emission technologies is expected to be beneficial from the point of view of energy consumption, environmental emissions and the economy. If transition of the whole fleet to Hydrogen fuel cell buses is carried out, 1.3 Mt of carbon dioxide equivalent emissions could be reduced, which represents a 87% reduction in green house gases emissions, and if the transition is to battery electric buses, the energy consumption would be reduced by between 25 and 38% and emissions by between 52 and 61% abating around 0.93 Mt of carbon dioxide equivalent per year.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据