4.7 Article

Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass

期刊

ENERGY
卷 249, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.123676

关键词

AI; Biomass upgrading; Gradient tree boosting; SHAP; Torrefaction

资金

  1. National Research Council of Thailand
  2. Chiang Mai University

向作者/读者索取更多资源

In this study, machine learning combined with collaborative game theory was applied to predict solid yields and higher heating values of biomass torrefaction products. The researchers developed an interpretable model and evaluated different machine learning algorithms. The use of the powerful SHAP algorithm allowed for interpretation and understanding of key features and interactions in the torrefaction process.
Torrefaction is a treatment process for converting biomass to high-quality solid fuels. The investigation and interpretation of this process on highly dimensional, non-linear relationships as large datasets are limited. In this work, machine learning (ML) in combination with collaborative game theory (Shapley additive explanation, SHAP) was applied to develop an interpretable model in predicting solid yields (SY) and higher heating values (HHV) of solid products from biomass torrefaction using 18 independent input features from operating conditions, feedstock characteristics and torrefaction reactor properties. Three novel ML algorithms were evaluated, based on 10-fold cross-validation, with 5 different sets of input features. A gradient tree boosting (GTB) model was found to have the highest prediction accuracy R2 of 0.93 with root mean square error (RMSE) of 0.06 for SY while about 0.91 R2 with 0.79 RMSE for HHV. With the powerful SHAP algorithm, a new framework was proposed to interpret/explain the GTB model performance and highlight the highly influential features for the system of biomass torrefaction in both local and global points of view. Interactions for any pair of the features on the GTB model can be achieved. This application of ML with SHAP is a useful tool for researchers on biomass conversion.(C) 2022 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据