4.7 Article

Investigating the impact of smart energy management system on the residential electricity consumption in Austria

期刊

ENERGY
卷 249, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.123665

关键词

demand-Side management; PV; Heat pump; Energy storage; Optimization; Building stock

向作者/读者索取更多资源

This study investigates the impact of smart energy management system (SEMS) on residential electricity consumption at both individual household and national level. The findings show that SEMS can significantly reduce grid-electricity consumption and enhance photovoltaic (PV) self-consumption at the individual household level. At the national level, SEMS also contributes to a substantial reduction in grid-electricity consumption in the residential building stock.
This paper addresses the following question: How can smart energy management system (SEMS) influence the residential electricity consumption at both individual household and national level? First, we developed an hourly optimization model for individual households. The energy cost of an individual household is minimized under given assumptions on outside temperature, radiation, (dynamic) electricity price, and feed-in tariff. By comparing the optimization to the reference scenario, we show the impact of SEMS on grid-electricity consumption and photovoltaic (PV) self-consumption at the individual household level. Second, to we aggregate the results to the national level, we constructed a detailed building stock taking Austria as an example. By aggregating the results of 2112 representative households, we investigate the impact of SEMS in the residential building stock on the national electricity system. As a result, we found that for individual single-family-houses (SFHs) with PV (no battery) and heat pump adoption, SEMS can significantly reduce the grid-electricity consumption up to 40.7% for a well-insulated building. At the national level we found that, for the buildings with 5 kWp PV but without hot water tank or battery storage, SEMS can still reduce the grid-electricity consumption by 7.4% by using the building mass asthermal storage.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据