4.7 Article

Modified model of reduction condensing losses strategy into the wet steam flow considering efficient energy of steam turbine based on injection of nano-droplets

期刊

ENERGY
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.122951

关键词

Non-equilibrium condensation; Modified model; Nano-droplets injection; Condensing losses; Efficient energy

向作者/读者索取更多资源

The study aims to reduce condensing losses of wet steam flow and increase the energy efficiency of steam turbine by injecting Nano-droplets in nucleation zone. The results are validated with experimental data and the SST k-u turbulence model is utilized to simulate the effects of Nano-droplets. Effective energy parameters have been presented, resulting in a significant decrease in condensation losses and improvements in efficient energy and Mach number.
In this study according to the challenges of the power generation industry and condensing losses of wet steam flow, the strategy of Nano-droplets injection in nucleation zone is used. The strategy as such have been adopted to reduce the condensing losses of the flow and increase the efficient energy of the steam turbine. In the first step, after performing the sensitivity analysis on the computational domain of the non-equilibrium condensation model, the results are validated with the experimental data. Also, the SST k-u turbulence model is utilized to simulate the latency created by the presence of Nano-droplets in the created domain. In the second step, the measurement criterion for injection effects in different locations of the nucleation zone is defined as efficient energy. This energy for the steam turbine are calculated as the energy of flow between the cascade blade, which it has the lowest wet losses of liquid phase and the highest temperature, velocity and internal energy. Finally, based on the Modified case, the efficient energy parameters have been presented, which result in a decrease of approximately 45% 27.5%, 21.4% 44% and 18%, for the condensation losses, droplets radius size, liquid mass fraction, the erosion rate ratio and wetness losses, respectively. Additionally an increasing trend of 18.25% and 0.2% for the efficient energy and Mach number has been observed. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据