4.7 Article

Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm

期刊

ENERGY
卷 249, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.123760

关键词

Seagull optimization algorithm; Photovoltaic models; Parameter estimation; Differential evolution; Function optimization

资金

  1. National Natural Science Foundation of China [61463009]
  2. Science and Technology Foundation of Guizhou Province, China [[2020]1Y012]
  3. Innovation Group Projects of Education Department of Guizhou Province, China [KY [2021]015]
  4. Guizhou Key Laboratory of Big Data Statistics Analysis [BDSA20200101]

向作者/读者索取更多资源

The paper introduces a novel hybrid optimization algorithm (HSOA) for accurately estimating unknown parameters of PV models, showing through experiments that it outperforms traditional methods.
Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据