4.7 Article

Robustness analysis in supercritical CO2 power generation system configuration optimization

期刊

ENERGY
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2021.122956

关键词

Supercritical CO2 power generation; Robustness analysis; Configuration optimization; Graph theory; Simulated annealing

向作者/读者索取更多资源

Supercritical CO2 power cycle offers higher thermal efficiency, with optimization of system configurations leading to improved performance and applicability. One-split configuration is recommended for better system performance and robustness evaluation.
Supercritical CO2 power cycle has higher thermal efficiency with medium turbine inlet temperature, simple layout, and compact system design. Optimization from configuration selection to parameter tuning makes the system best suited under different applications. System configuration is the premise of parameter design and operation strategy. To evaluate the impacts of configurations on thermal performance, a stepwise method was developed to categorize, optimize, and analyze supercritical CO2 power cycle configurations. First, graph information was used to narrow configurations down to meta-configurations. Second, integer and nonlinear solvers were utilized in simulated annealing algorithm to evaluate system performances, optimize parameters, and select candidate configurations. Third, the robustness of these candidates was evaluated through a parametric study. The results show 1, 2, and 28 meta-configurations for no split, one split, and two-split configuration categories. The thermal efficiency of optimized system configurations in three categories reaches 44.6%, 48.1%, and 49.4% with source, sink temperature of 780 K and 295 K, and turbomachine efficiency of 90%, respectively. In terms of robustness, a two-split configuration degrades more than one-split configuration under various pinch points, compression efficiency, and split ratio. Considering the limited efficiency improvement of the two-split configuration, the one-split configuration is recommended. Configuration without a split is applicable when the system is designed under extreme requirements. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据