4.7 Article

Understanding complex spatial dynamics from mechanistic models through spatio-temporal point processes

期刊

ECOGRAPHY
卷 2022, 期 5, 页码 -

出版社

WILEY
DOI: 10.1111/ecog.05956

关键词

landscape heterogeneity; meta-model; multi-type spatio-temporal point process; spatially explicit model; spatio-temporal pattern; system dynamics

向作者/读者索取更多资源

The landscape heterogeneity has a significant impact on population dynamics, species persistence, diversity, and interactions. Advanced spatially-explicit models (SEMs) accurately represent these relationships but are computationally complex and difficult to analyze. This study proposes an original approach using meta-models and meta-analysis to analyze SEM outputs, characterizing spatio-temporal population dynamics and landscape heterogeneity relationships in agricultural contexts. The results provide insights into pest-predator systems and help formulate biological control strategies at global and local scales.
Landscape heterogeneity affects population dynamics, which determine species persistence, diversity and interactions. These relationships can be accurately represented by advanced spatially-explicit models (SEMs) allowing for high levels of detail and precision. However, such approaches are characterised by high computational complexity, high amount of data and memory requirements and spatio-temporal outputs may be difficult to analyse. A possibility to deal with this complexity is to aggregate outputs over time or space, but then interesting information may be masked and lost, such as local spatio-temporal relationships or patterns. An alternative solution is given by meta-models and meta-analysis, where simplified mathematical relationships are used to structure and summarise the complex transformations from inputs to outputs. Here, we propose an original approach to analyse SEM outputs. By developing a meta-modelling approach based on spatio-temporal point processes (STPPs), we characterise spatio-temporal population dynamics and landscape heterogeneity relationships in agricultural contexts. A landscape generator and a spatially-explicit population model simulate hierarchically the pest-predator dynamics of codling moth and ground beetles in apple orchards over heterogeneous agricultural landscapes. Spatio-temporally explicit outputs are simplified to marked point patterns of key events, such as local proliferation or introduction events. Then, we construct and estimate regression equations for multi-type STPPs composed of event occurrence intensity and magnitudes. Results provide local insights into spatio-temporal dynamics of pest-predator systems. We are able to differentiate the contributions of different driver categories (i.e. spatio-temporal, spatial, population dynamics). We highlight changes in the effects on occurrence intensity and magnitude when considering drivers at global or local scale. This approach leads to novel findings in agroecology where, for example, we show that the organisation of cultivated patches and semi-natural elements play different roles for pest regulation depending on the scale considered. It aids to formulate guidelines for biological control strategies at global and local scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据