4.7 Article

Insights into the dynamics of the 2010 Eyjafjallajokull eruption using seismic interferometry and network covariance matrix analyses

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 585, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2022.117502

关键词

volcano-seismology; tremor; 2010 Eyjafjallajokull eruption; monitoring

资金

  1. Wiener-Anspach postdoctoral fellowship
  2. Icelandic Research Fund, Rannis [185209-051, 217738-051]
  3. Campus France PHC Tournesol funding [46158UG]
  4. project TFassistance - Program Tenerife INNOVA 2016-2021 of the Cabildo Insular de Tenerife
  5. project VOLRISKMAC [MAC/3.5b/124]
  6. project VOLRISKMAC II [MAC2/3.5b/328]
  7. INTERREG VA Spain-Portugal MAC 2014-2020 Cooperation Program of the European Commission

向作者/读者索取更多资源

Applying seismic interferometry and network covariance matrix-based analyses to the 2010 Eyjafjallajokull volcano eruption shed new insights into volcanic tremor. The source locations and characteristics of tremor varied between the effusive flank and explosive-effusive summit eruptions. The study highlights the importance of new data processing methodologies for real-time monitoring of volcanic tremor.
Applying seismic interferometry and network covariance matrix-based analyses to detect and locate the source of volcanic tremor during the 2010 Eyjafjallajokull effusive flank and explosive-effusive summit eruptions has provided new insights into this iconic event. The tremor source locations derived from the network covariance matrix approach were spatially distinct during the two eruptions. The tremor was radiated between the surface and 5-6 km depth during the effusive flank eruption, including an apparently progressive upward migration in early April 2010, but was strictly confined to the surface during the summit eruption. Each phase of the summit eruption left a distinct fingerprint in the seismic records. Effusive phases radiated continuous tremor between 0.6 and 5 Hz, whereas explosive phases produced tremor in a more pulsating fashion over a wider frequency band (0.2-10 Hz). A period of intermittent tremor bursts (called banded tremor) on 15 April, associated with formation of a new vent at the summit, was most likely generated by magma-gas-meltwater interaction within a subglacial enclosure. The banded tremor ceased following an abrupt draining of the newly formed subglacial cauldron, resulting in a large slurry glacial meltwater flood (jokulhlaup). This study highlights the importance of new data processing methodologies for future monitoring of volcanic tremor in real-time. (c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据