4.4 Review

Evolution of parthenogenetic reproduction in Caucasian rock lizards: a review

期刊

CURRENT ZOOLOGY
卷 69, 期 2, 页码 128-135

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cz/zoac036

关键词

Caucasus; glacial period; hybridization; reptiles; reticulate evolution; unisexual

类别

向作者/读者索取更多资源

Recent studies have shown that sexual species of rock lizards avoid interspecific mating with parthenogenetic species. The specific combination of environmental factors during the last glaciation period led to changes in the distribution and sex ratio of ectotherms. At least 7 diploid parthenogenetic species of rock lizards originated through interspecific hybridization in the past.
Despite numerous works devoted to hybrid origin of parthenogenesis in reptiles, the causes of hybridization between different species, resulting in the origin of parthenogenetic forms, remain uncertain. Recent studies demonstrate that sexual species considered parental to parthenogenetic rock lizards (Darevskia spp.) avoid interspecific mating in the secondary overlap areas. A specific combination of environmental factors during last glaciation period was critical for ectotherms, which led to a change in their distribution and sex ratio. Biased population structure (e.g., male bias) and limited available distributional range favored the deviation of reproductive behavior when species switched to interspecific mates. To date, at least 7 diploid parthenogenetic species of rock lizards (Darevskia, Lacertidae) originated through interspecific hybridization in the past. The cytogenetic specifics of meiosis, in particular the weak checkpoints of prophase I, may have allowed the formation of hybrid karyotypes in rock lizards. Hybridization and polyploidization are 2 important evolutionary forces in the genus Darevskia. At present, throughout backcrossing between parthenogenetic and parental species, the triploid and tetraploid hybrid individuals appear annually, but no triploid species found among Darevskia spp. on current stage of evolution. The speciation by hybridization with the long-term stage of diploid parthenogenetic species, non-distorted meiosis, together with the high ecological plasticity of Caucasian rock lizards provide us with a new model for considering the pathways and persistence of the evolution of parthenogenesis in vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据