4.8 Review

Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives

期刊

COORDINATION CHEMISTRY REVIEWS
卷 454, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2021.214339

关键词

MXenes; Nano-engineering; Electrochemical devices; Energy conversion; Energy storage

资金

  1. European Union
  2. Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE - INNOVATE [T1EDK-02442]

向作者/读者索取更多资源

MXenes are a diverse group of two-dimensional layered transition metal materials with exceptional properties, finding increasing applications in energy conversion and storage devices to solve the energy problems of modern society.
MXenes, with general formula Mn+1XnTx, (where n = 1-4; M = early transition metals; X = C, N, or a combination of both; T-x = surface functional groups like -OH, -O, -F, or -Cl) are a diverse group of two-dimensional (2D) layered transition metal carbides, nitrides and carbonitrides. Due to the energy and environmental problems, the renewable energy resources have critical importance. Owing to their exceptional properties, including very high electrical conductivity and thermal stability, MXenes are finding increasing applications in energy conversion and storage devices to solve the energy problems of modern society. In this review, we aim to provide a timely snapshot of recent advances in the synthesis, design, and engineering of MXene-based materials for the energy sector. Strategies for optimizing the performance of MXenes materials in energy applications, such as surface nano-engineering and compositing with 0D, 1D, 2D, and/or 3D materials are explored in the context of key energy conversion and storage devices. To fulfil the basic requirement of renewable energy devices, electrocatalysis of small molecular reactions such as ORR, OER, HER, NRR, and CO2RR, are comprehensively discussed on MXene-based electrode materials. Further, the MXene-based electrode materials for energy storage devices such as metalion batteries (Na+, Li+, K+, etc.), Li-S batteries and supercapacitors, are also summarized. Finally, challenges and future opportunities for MXenes in these different energy applications are discussed. This article may provide a leading route for design and synthesis of new catalytic materials toward efficient performance of energy conversion and storage devices. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据