4.7 Article

Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 322, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.126500

关键词

Artificial neural networks; Machine learning; Concrete; Metakaolin; Compressive strength; Mix design

向作者/读者索取更多资源

A model for estimating the compressive strength of concretes incorporating metakaolin was developed and evaluated using soft computing techniques. The model took into account six parameters as input data and was able to accurately estimate the compressive strength, considering the usage of metakaolin. The study highlighted the nonlinear influence of mix components on the resulting concrete compressive strength.
In this study, a model for the estimation of the compressive strength of concretes incorporating metakaolin is developed and parametrically evaluated, using soft computing techniques. Metakaolin is a component extensively employed in recent decades as a means to reduce the requirement for cement in concrete. For the proposed models, six parameters are accounted for as input data. These are the age at testing, the metakaolin percentage in relation to the total binder, the water-to-binder ratio, the percentage of superplasticizer, the binder to sand ratio and the coarse to fine aggregate ratio. For training and verification of the developed models a database of 867 experimental specimens has been compiled, following a broad survey of the relevant published literature. A robust evaluation process has been utilized for the selection of the optimum model, which manages to estimate the concrete compressive strength, accounting for metakaolin usage, with remarkable accuracy. Using the developed model, a number of diagrams is produced that reveal the highly non-linear influence of mix components to the resulting concrete compressive strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据