4.7 Article

Fire behaviour of hemp, clay and gypsum-based light biobased concretes and renders

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 331, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.127230

关键词

Biobased concretes; Raw earth; Gypsum; Hemp building materials; Cone calorimeter; Fire behavior

向作者/读者索取更多资源

Greenhouse gas emissions from cement manufacturing account for 8 to 10 percent of total CO2 emissions worldwide. Researchers are developing new concrete manufacturing techniques and processes to reduce these emissions. Biobased concretes are eco-friendly and can act as insulating materials for the building industry. However, there is a lack of knowledge regarding the combustion and heat release of these plant-based fillers during fires.
Greenhouse gas emissions from cement manufacturing account for about 8 to 10 percent of total CO2 emissions worldwide. To reduce these emissions, researchers are developing new concrete manufacturing techniques and processes to reduce high energy consumption and environmental impacts. Biobased concretes are eco-friendly insulating materials for building industry that can respond to this problem. However, there is a lack of knowledge regarding how these plant-based fillers ignite and contribute to heat release in case of fire. In this work, the fire behaviour of a series of hemp-based earth and/or gypsum concretes covering a large range of densities (180-1500 kg/m3) is investigated using the cone calorimeter at an incident heat flux of 50 kW/m2. The fire performances are mainly monitored by the thermal inertia of the materials. Only the lightest concretes ignite with a density threshold for ignition occurrence around 500 kg/m3. For a density of 261 kg/m3, the critical heat flux of an earth-hemp concrete was found to be close to 27 kW/m2. The flaming period remains very short in all cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据