4.5 Article

Embedded system implementation of an evolutionary algorithm for circle detection on programmable devices

期刊

COMPUTERS & ELECTRICAL ENGINEERING
卷 99, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compeleceng.2022.107714

关键词

Programmable devices; Embedded systems; Genetic algorithms; Circle detection; Industry 4.0

资金

  1. conacyt [718883]

向作者/读者索取更多资源

This paper describes a hardware implementation of a genetic algorithm for circle detection in digital images. The results demonstrate the suitability of this proposal for designing embedded systems with restricted size, resources, and energy consumption for applications in the Internet of Things, Industry 4.0, and related paradigms.
Programmable devices combine powerful processing systems with a rich infrastructure of general-purpose and specific logic blocks, making it possible the efficient implementation of embedded systems to perform complex tasks by facilitating hardware acceleration of critical stages to improve their performance. Based on these characteristics, a hardware implementation of a genetic algorithm for circle detection in digital images is described in this paper. The detection system has been designed for Xilinx Zynq-7000 and Zynq UltraScale+ family devices and implemented on two low-cost development boards that reach acceleration factors of 33.12 and 37.3, respectively, when compared to the fully software implementation. Detection results from both development boards have been compared using synthetic and real images from different scenarios. The accuracy and performance achieved demonstrate the suitability of this proposal to design embedded systems with restricted size, resources and energy consumption for applications in Internet of Things, Industry 4.0 and other related paradigms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据