4.7 Article

Co-generation of Collision-Free Shapes for Arbitrary One-Parametric Motion

期刊

COMPUTER-AIDED DESIGN
卷 151, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2022.103323

关键词

Automated design; Collision avoidance; Configuration space; Spatial reasoning; Persistent contact

资金

  1. Design for Assembly research program at PARC

向作者/读者索取更多资源

This paper introduces a generic method for generating a pair of geometries that are modified incrementally and simultaneously to avoid collision. The effectiveness and scalability of this method are demonstrated in both 2D and 3D by generating various collision-free shapes.
Mechanical assemblies can exhibit complex relative motions, during which collisions between moving parts and their surroundings must be avoided. To define feasible design spaces for each part's shape, maximal collision-free pointsets can be computed using configuration space modeling techniques such as Minkowski operations and sweep/unsweep. For example, for a pair of parts undergoing a given relative motion, to make the problem well-posed, the geometry of one part (chosen arbitrarily) must be fixed to compute the maximal shape of the other part by an unsweep operation. Making such arbitrary choices in a multi-component assembly can place unnecessary restrictions on the design space. A broader family of collision-free pairs of parts can be explored, if fixing the geometry of a component is not required. In this paper, we formalize this family of collision-free shapes and introduce a generic method for generating a broad subset of them. Our procedure, which is an extension of the unsweep, allows for co-generation of a pair of geometries which are modified incrementally and simultaneously to avoid collision. We demonstrate the effectiveness and scalability of our procedure in both 2D and 3D by generating a variety of collision-free shapes. Notably, we show that our approach can automatically generate freeform cam and follower profiles, gear teeth, and screw threads, starting from colliding blocks of materials, solely from a specification of relative motion and without the use of any feature-informed heuristics. Moreover, our approach provides continuous measures of collision that can be incorporated into standard gradient-descent design optimization, allowing for simultaneous collision-free and physics-informed co-design of mechanical parts for assembly. (C) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据