4.7 Article

triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 273, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cpc.2021.108249

关键词

Volume of fluid; Triangular surface mesh; Signed distances; Unstructured mesh

资金

  1. German Research Foundation (DFG) [265191195 -SFB 1194]
  2. project Initiation of International Cooperations [MA 8465/1-1]

向作者/读者索取更多资源

We propose a numerical method for calculating volume fractions from triangulated surfaces immersed in unstructured meshes. The method utilizes geometric calculations of signed distances and an approximate solution of the Laplace equation. It ensures high absolute accuracy and is applicable to triangulated surface models with technical geometrical complexity.
We propose a numerical method that enables the calculation of volume fractions from triangulated surfaces immersed in unstructured meshes. First, the signed distances are calculated geometrically near the triangulated surface. For this purpose, the computational complexity has been reduced by using an octree space subdivision. Second, an approximate solution of the Laplace equation is used to propagate the inside/outside information from the surface into the solution domain. Finally, volume fractions are computed from the signed distances in the vicinity of the surface. The volume fraction calculation utilizes either geometrical intersections or a polynomial approximation based on signed distances. An adaptive tetrahedral decomposition of polyhedral cells ensures a high absolute accuracy. The proposed method extends the admissible shape of the fluid interface (surface) to triangulated surfaces that can be open or closed, disjoint, and model objects of technical geometrical complexity. Current results demonstrate the effectiveness of the proposed algorithm for two-phase flow simulations of wetting phenomena, but the algorithm has broad applicability. For example, the calculation of volume fractions is crucial for achieving numerically stable simulations of surface tension-driven two-phase flows with the unstructured Volume-of-Fluid method. The method is applicable as a discrete phase-indicator model for the unstructured hybrid Level Set/FrontTracking method. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据