4.7 Article

Numerical study of interface damage formation mechanisms in machining CFRP/Ti6Al4V stacks under different cutting sequence strategies

期刊

COMPOSITE STRUCTURES
卷 285, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2022.115236

关键词

CFRP; Ti6Al4V stacks; FE simulation; Machining processes; Interface damage; Cutting sequence strategies

资金

  1. National Natural Science Foundation of China [51705319]
  2. Shanghai Pujiang Program [17PJ1403800]

向作者/读者索取更多资源

This study investigates the formation mechanisms of interface damage in composite/titanium stacks during machining, with a focus on the effects of cutting sequence strategies on stress and temperature distribution. The research highlights the dominant impact of cutting sequence strategy on interface damage and reveals the coupling effects of matrix damage and interface bending. The findings provide guidance for stack machining processes and cutting sequence selection.
Composite/titanium stacks are extremely difficult to machine due to the generation of severe interface damage, being the critical defect to suppress. The present paper aims to use the finite element method (FEM) to investigate the interface damage formation mechanisms following the machining of CFRP/Ti6Al4V stacks with a particular focus on the distribution of stresses and temperatures. Its key objective lies in revealing the effects of different cutting sequence strategies on the interface damage formation to guide the design of the stack machining pro-cesses as well as the selection of cutting sequences. A micro-mechanical orthogonal cutting model and a 3D drilling model of the CFRP/Ti6Al4V stacks were developed to explore the fundamental cutting edge/material interactions and the damage formation mechanisms under both the CFRP-* Ti and Ti-* CFRP strategies. The investigations confirm the dominant impact of the cutting sequence strategy on the stress and temperature distribution during the machining of CFRP/Ti stacks, which is mainly responsible for the diverse interface damage. Besides, the interface damage of a material layer becomes more serious when the material is machined as a secondary phase due to the adhesion and abrasion of previous material chips. The coupling effects of the matrix damage and the interface bending are the influential factors leading to severe interface damage under the Ti-* CFRP strategy, thereby unfavorable for the interface quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据