4.7 Article

Aluminum Diethylphosphinate as a Flame Retardant for Polyethylene: Investigation of the Pyrolysis and Combustion Behavior of PE/AlPi-Mixtures

期刊

COMBUSTION AND FLAME
卷 240, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2022.112006

关键词

Flame retardants; Polyethylene; Aluminum diethylphosphinate; Differential mass-spectrometric thermal analysis; Flame structure

向作者/读者索取更多资源

This study investigates the thermal behavior of aluminum diethylphosphinate (AlPi) as a flame retardant in ultra-high molecular weight polyethylene (UHMWPE). The research focuses on the effect of the flame retardant on the gas phase activity during polymer pyrolysis or combustion. The study finds that a small amount of AlPi significantly decreases the gas temperature in the flame, indicating its flame retardant effect.
The popularity of organic polymers despite their high flammability forces the introduction of flame retardants (FR) such as metal phosphinates into the combustible material. The thermal behavior of aluminum diethylphosphinate (AlPi) as FR in the widely used polymer ultra-high molecular weight polyethylene (UHMWPE) is investigated here. The study focuses on the effect of the FR on the gas phase activity when a polymer is pyrolyzed or burned. For this purpose, the fast pyrolysis of AlPi was investigated by differential mass-spectrometric thermal analysis (DMSTA). Also, the thermal and chemical structures of diffusion flames of UHMWPE + AlPi specimens were investigated using micro thermocouples and molecular beam mass spectrometry, respectively. Small amounts of AlPi (2.5 wt.%) decrease the gas temperature significantly by a maximum of 155 K related to FR-free polymer flames, indicating a retardancy effect of the additive on the flame. From the results of subsequent limiting oxygen index (LOI) tests, it is obvious that a PE burn-up cannot be achieved in a self-sustained flame when an additive content above 10 wt.% is used as FR. In the mass-spectrometric studies, the phosphorus-containing species produced in the pyrolysis experiments (DMSTA) of the neat AlPi as well as the species which are formed in flames during combustion experiments can be detected. In the flames, the concentration of the phosphorus containing compounds peaks at low heights above the polymer surface which indicate a gas phase activity of AlPi or its pyrolysis products. Besides a charring layer on top of the burning surface could be noticed. The use of AlPi as a FR for UHMWPE shows flame retardant effects in both the condensed and the gas phase.(c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据