4.6 Article

Surface imprinted upconversion nanoparticles for selective albumin recognition

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2022.129301

关键词

Magnetic nanoparticles; Silica nanoparticles; Surface imprinting; Upconversion nanoparticles; Supramolecular complex

向作者/读者索取更多资源

Upconversion nanoparticles (UCNPs) have been studied for their ability to convert low-energy infrared (IR) photons into high-energy visible photons. In this study, silica-based UCNPs were synthesized using a surface imprinting technique, and magnetic nanoparticles were also synthesized and immobilized with antibodies. A sandwich-like complex was formed between the UCNPs and magnetic nanoparticles, which could be used for recognition, detection, and selective adsorption.
Upconversion nanoparticles (UCNPs) have attracted researchers' attention because these particles transform two or more low-energy infrared (IR) photons into high-energy visible photons via a sequential absorption process. The molecular imprinting method, one of the biomimicking approaches, has remarkable advantages for creating synthetic receptors for molecules of interest. In this study, we have focused our attention on developing novel selective materials simultaneously having upconversion and biorecognition abilities to form a supramolecular complex. We proposed a new approach to synthesize silica-based UCNPs via surface imprinting of albumin that was chosen as a model biomolecule. In the first step, synthesis of surface imprinted upconversion silica nanoparticles and template removal processes were performed. FTIR, SEM, fluorimetry / UV-Vis spectrophotometry, zeta-size / potential measurements and BET (surface area measurements) were performed for the characterization. Biorecognition conditions were optimized and the optimum BSA recognition conditions were determined as BSA initial concentration, interaction time, pH, and temperature as 0.5 mg/mL, 15 min, 4.5, and 25 oC, respectively. The relative selectivity coefficients, designating the selectivity gained by the imprinting process for BSA/hemoglobin, BSA/ovalbumin, and BSA/gamma-globulin pairs were calculated as 4.69, 38.37, and 9.66, respectively. In the second step, the synthesis of the magnetic nanoparticles and antibody immobilization onto these particles were investigated. At the final step, sandwich-like supramolecular complex with magnetic nanoparticles (MNPs) and upconversion silica nanoparticles (UC-SiNPs) were done and characterized with UV-Vis spectroscopy, fluorescent spectrometry, and zeta size and potential measurements. In a conclusion, developed molecular imprinted upconversion supramolecular complex will be an alternative and intriguing approach where sandwichlike recognition, detection, and selective adsorption properties are simultaneously required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据