4.6 Article

Colloid dynamics near phase transition: A model for the relaxation of concentrated layers

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2021.128222

关键词

Colloids; Gels; Modeling; Transition; Diffusion; Osmotic pressure

向作者/读者索取更多资源

In this study, a continuum mechanical model is proposed to describe the dynamics of relaxation in concentrated colloids near a phase transition. The model takes into account the equation of state and osmotic pressure of colloids, allowing for the description of fast expansion and relaxation of accumulated gels.
The dynamics of concentrated colloidal dispersion close to a phase transition are challenging to predict. The presence of attractive interactions leads to hindered motions through the change in transport properties such as collective diffusion. We propose a continuum mechanical model to describe the dynamics of the relaxation of concentrated colloids near a phase transition. The model relies on a specific description of the equation of state of colloids, the osmotic pressure deriving from a free energy double-well function, that induces a decrease in collective diffusion close to the phase transition. The implementation of such transport properties in Computational Fluid Dynamics (CFD) codes enabled the description of a fast expansion of accumulated gels near an interface (induced for instance by evaporation or filtration processes) followed by a relaxation stage, where particles are progressively released from the layer toward the dilute bulk region. The model proposed in this work captures the increase of the relaxation time when approaching the transition, a feature of interest for engineering colloidal mixtures with concentration gradients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据