4.7 Article

Prospects of algae-based green synthesis of nanoparticles for environmental applications

期刊

CHEMOSPHERE
卷 293, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.133571

关键词

Nanoparticles; Green synthesis; Algae; Green chemistry; Sustainability

资金

  1. Higher Education Commission, Pakistan
  2. NRPU [7300]

向作者/读者索取更多资源

Biogenic synthesis of nanoparticles using algae is an eco-friendly and cost-effective approach that offers a diverse range of nanomaterials. Algae, with their high growth rate, CO2 sequestering ability, and heavy metal accumulation capacity, as well as their lack of toxic byproducts and minimal energy input, are ideal candidates for nanoparticle synthesis.
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgaebased synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据