4.7 Article

Modelling of transmembrane pressure using slot/pore blocking model, response surface and artificial intelligence approach

期刊

CHEMOSPHERE
卷 290, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.133313

关键词

Transmembrane pressure; Produced water treatment; Membrane slot; pore blocking model; RSM; ANN

向作者/读者索取更多资源

This study compared the prediction of transmembrane pressure using empirical, statistical, and machine learning methods, with ANN demonstrating better accuracy. The findings suggest that ANN can be helpful for process design and scale-up.
This work investigates the application of empirical, statistical and machine learning methods to appraise the prediction of transmembrane pressure (TMP) by oscillating slotted pore membrane for the treatment of two kinds of deformable oil drops. Here, we utilized the previous experimental runs with permeate flux, shear rate and filtration time as features, while TMP of crude oil and Tween-20 were two distinct targets. For 87 experimental runs, Response surface methodology (RSM) and Artificial Neural network (ANN) modelling were opted as statistical and machine learning tools, respectively, which were comprehensively compared with empirical slot-pore blocking model (SBM) considering accuracy and generalization. ANN with 10 neurons in the hidden layer could approximate the TMP of both oils better than RSM and SBM, which is reflected by computed performance metrics. Under the given conditions, almost similar analysis were predicted for TMP of both oils except changes in magnitude which were interpreted by (1) line plots, which showed that TMP of crude oil and Tween-20 were linearly related to flux rate and filtration time, and there was an inverse relationship between TMP and shear rate, (2) contour plots, which illustrated the strong interaction effect of flux rate and time on TMP, and (3) sensitivity analysis, which revealed the influential sequence of variables on TMP as; flux rate > filtration time > shear rate, for both cases. The optimisation of the process showed that minimum TMP can be attained by maintaining higher shear rate and lower flux rate and time. Conclusively, the current findings indicate the utilization of ANN for the accurate assessment of TMP and can be helpful for the process designing and scale up.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据