4.7 Article

Microbial electrolysis cell coupled with anaerobic granular sludge: A novel technology for real bilge water treatment

期刊

CHEMOSPHERE
卷 296, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.133988

关键词

Microbial electrolysis cell; Recalcitrant substrate; Anaerobic digestion; Archaea; Bacteria

资金

  1. European Union [841797]
  2. Marie Curie Actions (MSCA) [841797] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

In this study, the treatment of undiluted real bilge water using a membraneless single chamber Microbial Electrolysis Cell (MEC) with Anaerobic Granular Sludge (AGS) was examined for the first time. It was found that the undiluted bilge water had a higher impact on acetoclastic methanogens compared to hydrogenotrophic methanogens. However, dilution of bilge water allowed for its biodegradation. The coupling of MEC with AGS showed promising performance for bilge water treatment.
In the current study, treatment of undiluted real bilge water (BW) and the production of methane was examined for the first time using a membraneless single chamber Microbial Electrolysis Cell (MEC) with Anaerobic Granular Sludge (AGS) for its biodegradation. Initially, Anaerobic Toxicity Assays (ATAs) were used to evaluate the effect of undiluted real BW on the methanogenic activity of AGS. According to the results, BW shown higher impact to acetoclastics compared to hydrogenotrophic methanogens which proved to be more tolerant. However, dilution of BW caused lower inhibition allowing BW biodegradation. Maximum methane production (142.2 +/- 4.8 mL) was observed at 50% of BW. Operation of MEC coupled with AGS, seemed to be very promising technology for BW treatment. During 80 days of operation in increasing levels of BW, R2 (1 V) reactor resulted in better performance than AGS alone. Exposure of AGS to gradual increase of BW content revealed that CH4 production was possible and reached 51% in five days even after feeding with 90% of BW using simple commercial iron electrodes. Successful chemical oxygen demand (sCOD) removal (up to 70%) was observed after gradual biomass acclimatization. Among the different monitored volatile fatty acids (VFAs), acetic and valeric acids were the most frequently detected compounds with concentrations up to 2.79 and 1.81 g L-1, respectively. The recalcitrant nature of BW did not allow the MEC-AD (anaerobic digester) to balance the consumed energy. Microbial profile analysis confirmed the existence of several methanogenic microorganisms of which Desulfovibrio and Methanobacterium presented significantly higher abundance in the cathodes compared to anodes and AGS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据